M1.
acute-angled and isosceles

M2.
Sketch of possible pentagon with exactly one line of symmetry, integer sides labelled, perimeter ie 15 cm
$1 \times 7 \mathrm{~cm}$ and $4 \times 2 \mathrm{~cm}$
$1 \times 7 \mathrm{~cm}$ and $2 \times 3 \mathrm{~cm}$ and $2 \times 1 \mathrm{~cm}$
$1 \times 5 \mathrm{~cm}$ and $2 \times 4 \mathrm{~cm}$ and $2 \times 1 \mathrm{~cm}$
$1 \times 5 \mathrm{~cm}$ and $2 \times 3 \mathrm{~cm}$ and $2 \times 2 \mathrm{~cm}$
$1 \times 3 \mathrm{~cm}$ and $2 \times 5 \mathrm{~cm}$ and $2 \times 1 \mathrm{~cm}$
$1 \times 3 \mathrm{~cm}$ and $2 \times 4 \mathrm{~cm}$ and $2 \times 2 \mathrm{~cm}$
$3 \times 1 \mathrm{~cm}$ and $2 \times 6 \mathrm{~cm}$
$1 \times 1 \mathrm{~cm}$ and $2 \times 5 \mathrm{~cm}$ and $2 \times 2 \mathrm{~cm}$
$1 \times 1 \mathrm{~cm}$ and $2 \times 4 \mathrm{~cm}$ and $2 \times 3 \mathrm{~cm}$
$5 \times 3 \mathrm{~cm}$ (but sketch clearly only has 1 line of symmetry)
B1
regular pentagon with $5 \times 3 \mathrm{~cm}$ labelled
or
(impossible) pentagon with sides labelled
eg $1 \times 11 \mathrm{~cm}$ and $4 \times 1 \mathrm{~cm}$
or
pentagon with one line of symmetry and non-integer sides labelled, perimeter 15
Units not needed

M3.
(a) Never true
(b) Always true

M4.(a) 30
(b) Hexagon

M5.
(a)

(b)

M6.

B2 for 1 correct triangle.
B2 for correct angles in both triangles but incorrectly positioned.
B1 for a triangle with 74° and 2 other equal angles not totalling 180° or for a triangle with $2 \times 74^{\circ}$ and 1 other angle not totalling 180°. NB 74° must be correctly positioned.

M7.

B1 for 4 correct, 1 wrong
B0 for 2 or more wrong

B1 for 4 correct, 1 wrong

M8.
x coordinate $=2$
$(2,4)$ marked on diagram.

Base = $7--3(=10)$
10 marked on diagram as base or stated as base in script. This mark is for showing that the base is 10 and not for 7 - $3=10$ if used to find the x coordinate.

Height $=20 \div$ their $10 \times 2(=4)$
4 marked on diagram as height
NB height shown or stated as 4 is 2 marks (assume base of 10)
y coordinate $=8$
ft their height if M awarded and no other errors.
Accept
NB 8 stated as y coordinate is B1, M1, A1 (ie last 3 marks) unless contradictory or wrong working.

M9.
(a) Any correct equation
e.g. $12 x+x+96+96=360$
e.g. $22 x+x+96+96=360$
e.g. $3 x+\frac{1}{2} x+96=180$

Correct rearrangement of their equation to the form $a x=b$
or
$\frac{360-96-96}{3}$

$$
3 x=168 \text { or } \frac{3}{2} x=84 \text { oe if } B 1
$$

Follow through their equation of form

$$
\begin{aligned}
& p x+q=r \\
& a, b, p, q \text { and } r \text { all non-zero }
\end{aligned}
$$

56

$$
\text { ft their } a x=b \text { if M1 gained }
$$

(b) Fully correct explanation
e.g. 1 Labels large rectangle a and b
or labels diagonals of kite a and b
Area rectangle $=a \times b$
Area kite $=\frac{1}{2} \times$ product of diagonals

$$
=\frac{1}{2} \times a \times b
$$

e.g. 2 Labels each part of top edge with w and the side parts with x and y

Area rectangle $=2 \mathrm{w}(\mathrm{x}+\mathrm{y})$

$$
=2 w x+2 w y
$$

Area kite $=\frac{1}{2} w x+\frac{1}{2} w x+\frac{1}{2} w y$

$$
\begin{aligned}
& +\frac{1}{2} w y \\
& =w x+w y
\end{aligned}
$$

e.g. 3 Draws both diagonals of kite and indicates there are 4 pairs of equal areas
e.g. 4 Draws at least one diagonal of the kite and states that the area of a triangle is half the area of a rectangle
e.g. 5 Uses compatible numbers and correctly works out areas of kite and rectangle

For example

Labels each part of top edge with 4 and the side parts with 3 and 6
Rectangle area $=8 \times 9=72$
Kite area $=0.5 \times 8 \times 3+0.5 \times 8 \times 6$
$=12+24=36$
B1 Partially correct statement or correct step towards correct
explanation
e.g. $1 \quad$ Labels large rectangle a and b or labels diagonals of kite a
and b
Area rectangle $=a \times b$
Area kite $=\frac{1}{2} \times a \times b$
e.g. 2 Labels each part of top edge with w and the side parts with x
and y
Area rectangle $=2 w(x+y)$
Area kite $=\frac{1}{2} w x+\frac{1}{2} w x+\frac{1}{2} w y+\frac{1}{2} w y$
e.g. 3 Draws both diagonals of kite
e.g. 4 Uses compatible numbers and works out areas of kite and
rectangle with correct method but makes arithmetic error(s)
For example
Labels each part of top edge with 4 and the side parts
with 3
and 6
Rectangle area $=8 \times 9=82$
Kite area $=0.5 \times 8 \times 3+0.5 \times 8 \times 6$

$$
=12+24=36
$$

M10.T, T, F, T
B2 for 3 correct
B1 for 2 correct

M11.(a) F

Square
(b) 9
cm^{2}
B1

M12. Kite either horizontal or vertical with long diagonal 6 cm and short diagonal 4 cm B1 for any kite Condone a square using the given side or an arrowhead for B1

M13.360 $\div 4$ or 90 seen
Right angle symbol may be on diagram May be implied from symmetry line and 45

$$
\begin{aligned}
360-90-36(= & 234) \\
& \text { If symmetry used } 90 \div 2 \text { or } 45 \text { and } 36 \div 2 \text { or } 18 \text { seen } \\
& \text { or } 63 \text { seen } \\
& \text { If isosceles triangles used }(180-90) \div 2 \text { or } 45 \text { and }(180- \\
& 36) \div 2 \text { or } 72 \text { seen }
\end{aligned}
$$

```
their \(234 \div 2\)
or 180-45-18
or \(45+72\)
Dependent on \(1^{\text {st }}\) two Method marks
```

117

Alternative Method

$360 \times 4-360$
or 6×180
or 1080
oe
their $1080-36 \times 4(=936)$
their $936 \div 8$

117

M14.
(a) Correct sketch.

Do not accept rectangle
(b) Correct sketch.

Do not accept rhombus
(c)

Square must have line as diagonal unless they have made a mistake and started over.

M15.

(a) A and F
(b) C and D
(c) E and F

> B1 for either
(d)

Or any that work
All 3 pieces shown and shapes correct sizes

M16.
(a) $180-75(=105)$
$3 a=$ their 105
Their $105 \div 3$

35
(b) $(180-40) \div 2$

Allow invisible brackets

70
A1
[5]

M17.

$$
180-(360 \div 8)
$$

Check diagram for external angle marked as 45 . If so M1

135
Check diagram for internal angle marked as 135. If so M1, A1
67.5

Alternative

$6 \times 180(=1080)$
$1080 \div 8=135$
67.5

